Big Ideas 1 & 2 Study Guide: Nature of Science

Types of Scientific Investigations:

Type of Investigation	Description
	a representation of an idea, an object, a process, or a system that is used to describe and explain something that cannot be experienced directly.
	an imitation of the functioning of a system or process
	documenting descriptive details of events in nature –amounts, sizes, colors, smell, behavior, texture - for example - eclipse observations
	studying plants and animals in their natural habitat
	an investigation in which scientists control variables and set up a test to answer a question. A controlled experiment must always have a control group (used as a comparison group) and a test group.

ALL types of Scientific Investigation include making ______and collecting evidence.

Observations:

ALL scientists make observations. An **observation** is information about the natural world that is gathered through one of the five senses. An observation is something you see, hear, taste, touch, or ______.

List 5 Examples of Observations		
1.		
2.		
3.		
4.		
5.		

Evidence

Evidence is information gathered when scientists make systematic	or set up an
experiment to collect and record data. The record	ed is then analyzed by the scientists in
order to base conclusions on the evidence collected. The collection of	is a critical part
of a scientific investigation. Although the scientific method does not alwa	ays follow a rigidly defined set of steps,
a scientific investigation is only valid if it is based on	and evidence.

Controlled Experiments

A controlled experiment is different than all other types of scientific investigations because in an experiment,

______ are being controlled by the scientist in order to answer a question. A controlled experiment always includes at least two groups - a test group and a ______ group used for comparison. The control group is identical to the test group except for the one variable changed on purpose (the thing being tested) so that evidence of any difference can be collected. A variable is a factor, condition, or event that can be changed or controlled in order to study or test a hypothesis. There are three classes of variables used in experiments:: the test (independent) variable, the outcome (dependent) variable, and the controlled (constant) variables.

Variable Type	Also Known As	Defined As:
Variable	Independent Variable	The one thing that is changed between the test group and control group on purpose The thing being tested. For example the independent variable in the skittle lab was the temperature of the water.
Variable	Dependent Variable	The way that we are measuring the difference between the control and test groups - for example the dependent variable in the skittle lab was the speed the outer coat dissolved
Variables	Constants, Controlled Variables	All of the things kept the same in an experiment so that you can trust that any difference between the test group and the control group is because of the independent variable (or thing that is being tested). For example in the skittle lab the color of skittle, amount of skittles, amount of water, type of cup, etc would all be kept the same.

Scientists always complete at least	_ trials in a controlled experiment. Performing repeated
trials helps to ensure that the results of an experime	nt are This means that the results
are consistent (or similar) in all of the trials performed	d. A valid experiment controls variables, includes at least
three and obtains similar res	sults in the three trials. It is important to note that scientific
investigations do not follow a rigidly defined set of	. These investigations follow steps
necessary to find an answer to the question being in	vestigated. The table below shows some steps that are
often included in the scientific method when carrying	out a controlled experiment.

Step	Description	
Problem/Purpose	The question being investigated is identified.	
Research	Information about the topic is obtained from reputable sources: books, internet (reliable sites), experts, encyclopedias, etc.	
Prediction (Hypothesis)	A prediction, based on, is made about what you think the evidence is going to show. All 5th grade hypotheses should include the words If then because	
Experiment	Materials are identified and a procedure is developed to test your prediction Make sure that you are very specific about the details - amounts, types, colors, etc.so that another scientist could follow your steps. Once you have a good procedure, you should perform your experiment and keep data in a data table.	
Analyze Results	Examine the and look for patterns, trends, consistencies, etc	
Conclusion	Compare the results with your hypothesis. Was your hypothesis supported by the evidence? Or did the evidence disprove your hypothesis?	

To help fill in these charts students are asked to reflect on three different inquiries from the CRM PowerPoints: Those inquiries are:

- Tennis Ball Lab from Big Ideas 1 & 2 CRM PowerPoint
- Increasing Temperature and Antacid Tablet Reacting Extension of Inquiry Activity from Big Ideas 8 & 9 CRM PowerPoint
- Marble P-SELL Lab from Big Idea 13 CRM PowerPoint

Tennis Ball Lab (from Big Ideas 1 & 2 CRM PowerPoint) - Give examples of:

Predictions	Observations	Inferences

Give Examples of Constant (Controlled) Variables for each lab:

Tennis Ball Lab	Temperature and Tablet Lab	Marble Lab

Give Examples of Independent (Test) Variable for each lab:

Tennis Ball Lab	Temperature and Tablet Lab	Marble Lab

How are the independent variables in any lab similar?

Give Examples of Dependent (Outcome) Variable for each lab:

Tennis Ball Lab	nis Ball Lab Temperature and Tablet Lab	

How are the dependent variables in any lab similar?

Control Group

Why is it important to have a control group in an experiment?

Why is it important for a scientific investigation to be replicable by other scientists?

Why is it important for scientists to share findings with other scientists?

Big Ideas 8 and 9 Study Guide: Properties and Changes in Matter

Matter is anything that has	and	<u> </u>
The three	(or forms) of matter include,,	, and
Solids have a definite	and	
Liquids have a definite	, but no definite	
Gases don't have a definite	or	

Fill in the chart. Put yes in the box if it is possible for the state to have the property listed. Put no in the box if it is not possible for the state to have the property.

Property	Solid	Liquid	Gas
Yellow color			
Definite shape			
Definite volume			
Bumpy texture			
Able to scratch another object			
Can Break			
Takes the Shape of its Container			
Clear color			
Has mass			

How do you know something has dissolved in a liquid?		
Two things that dissolve in water are	and	·
Two things that DO NOT dissolve in water are	and	
Three ways to speed up the dissolving process are	,,	,
and		
Two ways to slow down the dissolving process are	, and	

Mass =
Mass is measured by
Volume =
What are three ways to measure volume? 1
23
Temperature =
Temperature is measured by a
Mixtures of solids can be separated by properties like size, shape,, and attraction to magnets.
If a substance is dissolved in water (like salt) then it can be separated from the water by
A mixture of sand and gravel could be separated by using a
A mixture of gravel and iron nails can be separated by using a
A physical change is a change of a substance from oneto another without a change in its chemical properties. No new substance is formed.
When water freezes, it, or spreads out. If water is in a container or pipe when it freezes, it can even cause the container or pipe to burst or break.
A chemical change is a process by which substances are changed into different substances with different A new substance is formed.
Adding heat, stirring/shaking, and exposing more surface area cause chemical changes to happen
Boiling water is an example of a change.

Fill in the blanks on the diagram with the science word that describes the change.

REMOVE HEAT
ADD HEAT
When water changes from a solid to a liquid it
When water changes from a liquid to a gas it
When water changes from a gas to a liquid it
When water changes from a liquid to a solid it
As the temperature of a gas increases, so does its
When youthe temperature of chemical changes, the rate of the reaction increases.
A change ofcauses water to change states.

Draw a picture showing a balance scale with two boxes of equal mass, but different volume.

Draw a picture showing a balance scale with two objects of equal volume, but different mass.

Place the following words into the t-chart under the type of change the term indicates.

burning	dissolving	rotting	rusting	freezing
crushing	condensing	boiling	cooking	melting
evaporating	decaying	cutting	shattering	digesting

Physical Change	Chemical Change

Big Idea 13 Study Guide: Forces and Changes in Motion

Types of Forces

Motion is caused by familiar forces like a push, pull, friction, gravity, and magnetic attraction.

Α	is a force that causes an object to move away from the thing pushing it.
Α	is a force that causes an object to move toward the thing pulling it.
	is a force which resists motion and can also create heat.
	is a force that can attract (pull) and repel (push).
the Sun.	is a force that pulls objects toward the Earth's center. It also keeps planets orbiting

<u>Magnetism</u>

When two magnets with the same poles (north and north or south and south) are placed next to each other, they will ______.

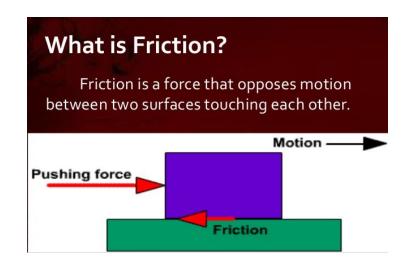
When two magnets with opposite poles (north and south) are placed next to each other, they will

Draw a diagram to show what happens when the north pole of a magnet is placed next to the north pole of another magnet.

Draw a diagram to show what happens when the north pole of a magnet is placed next to the south pole of another magnet.

Draw a diagram to show what happens when the south pole of a magnet is placed next to the south pole of another magnet.

<u>Gravity</u>


To overcome the force of gravity, a force must be applied that is ______ than gravity's downward pull.

The	the mass of an object the	 the force needed to
overcome the force of gravity		

<u>Motion</u>

When a force is applied to an object, its		, the object may stop
moving, start	, change	, or change direction.
When an object is in	it always chanç	ges its position and may change its
To put an object in motion, yo	ou have to apply a	
To stop an object's motion, y	ou have to apply a	
To change an object's directi	on, you have to apply a	
To speed up or slow down ar	n object, you have to apply a _	
Thethe	force applied, the	the change in motion.
If you apply a	force, then the object v	will move farther and with more
If you apply the same amoun	t of force to objects with differ	ent mass, then the object with the
amoun	t of mass will travel farther an	d with more
is the r	neasure of the time it takes ar	n object to travel a specified distance.

Friction

Balanced Forces

When the motion of the object does not change, then the forces are ______.

An object sitting still will continue to sit still if the forces are ______.

If forces are ______ then a moving object will continue to move at the same (constant) speed and in the same direction.

Unbalanced Forces

When two forces are pushing from opposite sides, then the pushing side with greater force causes motion that is away from the push. Draw a diagram to illustrate this.

When two forces are pulling from opposite sides, then the pulling side with greater force will cause motion that is toward the pull. Draw a diagram to illustrate this.

Big Ideas 10 and 11 Study Guide: Forms of Energy

Energy

Energy has the ability to cause ______ or create change.

Energy is ______ created or destroyed.

Energy ______ from one form to another.

Some examples of energy causing motion are:

Some examples of energy creating change are:

Forms of Energy

Some basic forms of energy are: _____, ____,

_____, _____ and _____

Light Energy

Light travels in a ______ line until it strikes an object or travels from one material to another (such as traveling from air to water).

When light strikes an object or substance it can _____(bounce off), absorb (be taken in), or bend (refract).

Light reflecting off of objects is what allows you to see objects in our world. For example, when you look at a yellow bike, the yellow light is bouncing off of the bike into your eyes. All of the other colors that make up white light (red, orange, green, blue, indigo, and violet) are absorbed by the bike.

When light travels from one substance to another, for example from air to water, it changes speed causing it to ______(change direction / refract). We can see an example of this when we place a pencil partially in water and it appears to be ______.

When light strikes a mirror, all of the light is reflected. Draw a picture of light bouncing off of a mirror.

Sound Energy

Sound travels in	Sound waves are	in the air around you. We
hear a bell ring because the	e bell causes the air around it to	. These vibrations travel
through the air to our eardru	um which also and a	llows us to hear the bell. Sound travels
fastest through	, then, and	I slowest through
When sound waves vibrate	quickly apitch sound	d is produced.
When sound waves vibrate	slowly apitch sound	is produced.
<u>Heat Energy</u> Heat, or of its moving molecules.	energy is the amount of energy contain	ned in an object or a substance because
Temperature measures how	v quickly or slowly the	_ are moving. In hotter objects the
molecules move quickly, wh	nile in colder objects the molecules move _	
Heat energy will always find	l a balance. For example, when a heater is	s placed in one corner of the room, the
will spre	ad out to warm the whole room. Heat ener	rgy always flows from the
object or area to the colder	object or area. Heat flow can cause mater	ials to change
Radiant energy from the su	n canobjects. When e lost.	the sun is not present
Objects rubbing together (fr	iction) produces ene	ergy.
are m	aterials that heat and/or electricity flow thr	rough easily. Things that are made of
are go	od conductors. Some examples of good c	onductors are
	aterials that heat or electricity does NOT fl	ow through easily. Some examples of
insulators are		
<u>Chemical Energy</u> Chemical energy is <mark>energy</mark>	that is stored in matter that can be release	ed by a chemical reaction.
Food is	energy that is released through chemica	Il reactions during digestion.
Batteries contain	energy that is changed into ele	ectrical energy.

Mechanical Energy

Mechanical Energy is the energy that an object has because of its ______ or its position.

A moving car contains ______ energy because it is moving.

A ball on an inclined plane also contains stored ______ energy because it has the potential to fall due to its elevated position.

Electrical Energy

Electrical energy is a type of energy which flows through a current.

Electrical energy can be changed into many other forms of ______.

Electrical energy can be transformed into sound energy, light energy, heat energy and _____

Item	Original Energy	Primary Energy Transfer	Secondary Energy Transfers
Toaster		Heat/Thermal	Light,Sound, Mechanical
Lamp	Electrical		Heat/Thermal
Radio		Sound	Light, Heat/Thermal
Fan	Electrical		Sound, Heat/Thermal

The flow of electricity requires a ______. A closed circuit must include: a power source (battery),

a conductive path (wire)and the _____(item which is being powered).

While an ______ current is a continuous flow of electricity created by a closed circuit,

_____electricity is a quick burst of energy which is produced by charged particles.

_____is an example of static electricity.

An electrically charged object like a balloon after being rubbed on a sweater will ______ an

uncharged object. Additionally, an electrically charged object will _____another charged object

with the opposite charge(+ and -), but it will ______ a charged object with the same charge (+and

+ or – and -).

Draw a diagram to show what happens when two positively charged objects are next to each other.

Draw a diagram to show what happens when two negatively charged objects are next to each other.

Draw a diagram to show what happens when a positively charged object and a negatively charged object are next to each other.

Draw a diagram to show what happens when an electrically charged object is next to an uncharged object.

and air in motion are sources of energy which are able to create motion and cause
change.
Hydroelectric power plants capture the of falling water to generate electricity. The falling
vater turns a wheel called a turbine and changes/transforms the mechanical energy of falling water into
energy.
Vindmills capture the of moving air to generate electricity. The moving air turns the
plades of the windmill turning a turbine and changing theenergy of the moving air into
electrical energy.

Big Idea 5 Study Guide: Earth in Space and Time

Galaxies and Stars:

A galaxy consists of gas,	, and stars (and objects orbiting the stars such as planets,
moons, asteroids and comets) - all held togethe	er by gravity.

Earth is part of the _____ Galaxy.

Stars are made of ______. The Sun is a star that emits energy - some of which is in the form of light.

Large stars can appear small for these reasons:

1.The star is _____away.

2. The star is giving off ______light (is not as bright).

Even though it is only a medium sized star, the ______ appears much larger and brighter than all of the other stars in Earth's sky because it is the closest to the Earth.

Planets:

All planets are spheres (round), rotate on an axis, and revolve around a star (in Earth's case the sun).

Characteristic	Inner Planets	Outer Planets
Composition (what it's made of)		
Atmosphere		
Size		
Position relative to Sun		
Presence of Moons		
Presence of Rings		
Relative Temperature		
Length of Year		

Rotations and Revolutions:

Earth <u>rotates on its axis once every 24 hours (1 complete day and night)</u>. Earth <u>revolves around the sun once</u> every 365 days (1 year). Day & Night is caused by earth's rotation while seasons are caused by its revolution.

The moon <u>revolves</u> around the Earth once every 29.5 days (approximately 1 month). The moon makes 1 full <u>rotation</u> on its axis with each complete revolution around the Earth. As a result, we only ever see one side of the moon. The moon does not give off light, so we can only see the part of the moon that is illuminated by the sun. Because the lit side of the moon is not always facing earth, we see different amounts of the moon throughout its month-long orbit around Earth (moon phases).

The stars we see from earth change from month to month because we are <u>revolving</u> around the sun. If you look up into the night sky at the same time each year, you will see the same stars because earth is at the same place in its orbit. As the seasons change throughout the year, we can see different stars and constellations.

The seasons on earth happen because of the <u>tilt</u> of the earth on its axis and its <u>revolution</u> around the sun.

The sun, moon, & stars appear to move across the sky from east to west because of earth's rotation.

Space Objects:

Space Object	Characteristics	Image
	A solid space object made of rock or metal that is irregularly shaped.	
	A space object made of ice and dust that has a tail when it gets close to the sun.	
	Consists of gas, dust, and stars (and any objects orbiting the stars) - all held together by gravity.	
	A natural object that orbits a planet.	
	A round (spherical) space object that rotates on an axis and revolves around a star. Earth is a planet that rotates on its axis and revolves around the Sun.	
	The four planets closest to the Sun (Mercury, Venus, Earth, Mars). Characteristics: solid (made of rock and metal), thin to no atmosphere, small, closer to sun, few to no moons, no rings, relatively hot, relatively short years	Augur Ven
	The four planets farthest from the Sun (Jupiter, Saturn, Uranus, Neptune). Characteristics: made of gas, thick gaseous atmosphere, large, farther from sun, many moons, rings, relatively cold, relatively long years	Sagar Sagar
	A system of planets and other bodies that orbits a star.	Our Solar System
	A large object in space that is made of gas that produces its own light.	

Big Idea 6 Study Guide: Earth Structures

Minerals

Minerals are naturally occurring, non-living, solids with a definite chemical composition. Minerals can be identified by their individual properties. The table below examines some of the properties we can use to identify or describe a mineral.

Property	Description	
Color	Like all objects in our world, when light shines on a mineral some colors bounce off the mineral and other colors are absorbed by the mineral. Our eyes see the color that is bounced off or reflected. Many minerals share the same color so you will have to observe more than just this property in order to identify a mineral.	
	Describes how easily it can be scratched. A mineral is considered harder than another mineral if it can scratch that mineral.	
	Describes how a mineral appears when it reflects light (how shiny it is). Words like metallic, earthy, glassy, dull, pearly and waxy can be used to describe this property.	
	Describes how a mineral breaks apart along smooth surfaces. Mica is a mineral with excellent cleavage.	
	Describes the color of the powder the mineral leaves behind when it is rubbed on a streak plate (porcelain tile).	

Mineral Properties Song (To the tune of Frère Jacques)

Hardness - Scratch Hardness - Scratch Luster - Shine Luster - Shine Cleavage - Break Cleavage - Break Streak - Powder Streak - Powder

Rock Song

Metamorphic - Heat and Pressure Sedimentary - Erosion and Weather Igneous - Red hot magma - Cooled

Rocks

All rocks are made of minerals. Each rock contains two or more minerals. Rocks are classified by the way that they are formed. The table below describes the three types of rocks.

Type of Rock	How it is Formed	Characteristics Possible	Found	Examples
	Formed when melted rock, known as magma (lava),cools	 glassy gas bubbles crystals when cooled slowly 	Near volcanoes	pumice obsidian, basalt
	Forms deep in the earth when rock is put under extreme heat and pressure	ribbon-like layershardcrystals	Near fault lines, or deep in the earth	slate, schists, marble, gneiss
	Forms on earth's surface when rock is weathered, layered, and cemented together naturally by water	 fossils (remains of dead plants & animals) visible layers visible pieces of different sizes & types of rock and sediment 	Near water	conglomerate shale, sandstone, limestone

Weathering and Erosion - Change the surface of Earth slowly

Process	Definition	Agents That Can Cause Each Process	
	The breaking down of rock by various agents on earth.	water, wind, ice (glaciers), temperature change, plants	
	The moving of sediment (rock) to new places by various agents on earth	water, wind, ice (glaciers), gravity	

Some things that cause rapid changes to earth's surface are - earthquakes, volcanoes, landslides, avalanches, floods, tsunamis.

Renewable and Nonrenewable Resources

Definition	Examples	Examples in Florida
A resource that can be remade fairly easily.	wind, solar, water /hydropower, tides, fruit, vegetables, wood, biofuel /ethanol, cotton	water, wind, solar energy, orange trees
A resource that can't be easily remade.	fossil fuels (coal, oil & natural gas), phosphate deposits, limestone, silicon	phosphate, oil, limestone, silicon

Big Idea 7 Study Guide: Earth Systems and Patterns

Water Cycle

The ______ is the continuous process in which water moves from earth's surface to the atmosphere and back again.

The ______ powers the water cycle.

The ocean is an integral part of the water cycle. It's connected to all water by evaporation and precipitation.

Process	Description of the Process	State
	The sun's energy <u>changes</u> water from a liquid to a gas.	Water is a gas
	The atmosphere cools down the water vapor (gas) and <u>changes</u> it back to a <u>liquid</u> .	Water is a liquid
	Falling back to earth's surface once large enough droplets have formed during condensation	<u>Rain</u> - water as a liquid <u>Snow</u> - water as a solid <u>Sleet</u> - water as a solid- liquid mix <u>Hail</u> - water as a solid

Weather

The condition of the ______ at a given place and time.

Factors that Determine Weather

Factor	Definition and Measurement Tool	Description
Air	<u>Thermal (heat)</u> energy in the air. Thermometer – Degrees Fahrenheit or Degrees Celsius	 The unequal <u>heating</u> of the atmosphere of earth by the sun causes the air temperature to differ by location. Land <u>heats</u> and cools faster than <u>water</u>. This means that air over land areas has more extreme temperature changes – higher maximum temperatures and lower minimum temperatures. Air over <u>water</u> has less extreme temperature changes – the air temperature is more moderate, or closer to the average. Clouds may also affect the air temperature. During the day, they may <u>reflect</u> the sun's rays away from the surface of earth making the air temperature cooler. At night, clouds may keep the heat from the sun trapped close to the surface of earth making the air temperature stay <u>warm</u>.

Pressure	Weight of the <u>air pushing</u> down Measured with a barometer	 Air pressure is the measure of the weight of the <u>gases</u> in the atmosphere pushing down on us. Air pressure <u>decreases</u> as the altitude increases. High <u>air</u> pressure brings clear, sunny skies Low air pressure brings more evaporation, cloud formation, higher humidity and precipitation. <u>Warm</u> air rising pushes down with less force creating an area of low pressure. Cold air sinking pushes down with more force creating an area of <u>high</u> pressure.
	Amount of <u>water</u> vapor in the air Measured with a hygrometer	 Humidity is the amount of <u>water</u> vapor in the air. Warm <u>air</u> can hold more water vapor than cold air. When the humidity is <u>high</u>, it is more likely that the area will have clouds and precipitation because the air contains <u>more moisture (water vapor)</u>. If the humidity is <u>low</u>, the air is drier.
Wind Speed and Direction	Wind speed – how <u>fast</u> or slow the wind is blowing. Measured with an anemometer Wind Direction – where the wind is coming from and going to Measured with a wind vane	 Air moves from areas of high pressure to areas of low pressure making wind. The speed of the wind and the direction from which it is coming affects the <u>weather</u> in an area. If wind is traveling from over a <u>land mass</u>, the air it carries with it will be drier. If wind is traveling from over <u>water</u>, the air it carries will be wetter containing more water vapor. If wind is traveling from a warm place, like the equator, it carries warm air with it. If wind is traveling from a cold place, like the north or south pole, it carries cold air with it.
	Water falling back to earth's <u>surface</u> Measured with a rain gauge	 Types of precipitation include rain, snow, sleet, and hail. See table below for more detail

Precipitation

Precipitation can occur in four forms including rain, _____, sleet, and hail.

Type of Precipitation	Temperature	State/Description
	33 Degrees F (1 Degrees C) or Above	Liquid
	32 Degrees F (0 Degrees C) or Below	Solid
	32 Degrees F (0 Degrees C) or Below	Solid - Liquid Mix Forms when rain travels through a freezing layer of air as it travels to the surface of earth.
	On the surface of earth: Any temperature - often warm In the atmosphere: 32 Degrees F (0 Degrees C) or Below	Solid Forms during a Storm - Strong upward winds whip rain up to the cold upper atmosphere where it can resulting in the solid ice precipitation known as hail.

<u>Clouds</u>

Clouds form when water vapor ______ down and changes state from a gas to a liquid.

This state change is known as ______. At first, the tiny droplets that form are not big

enough or heavy enough to ______ back to earth as precipitation so these water droplets are the

clouds we see from the surface of earth..

Draw and Label Cirrus, Cumulus, Stratus and Cumulonimbus Clouds in the space below.

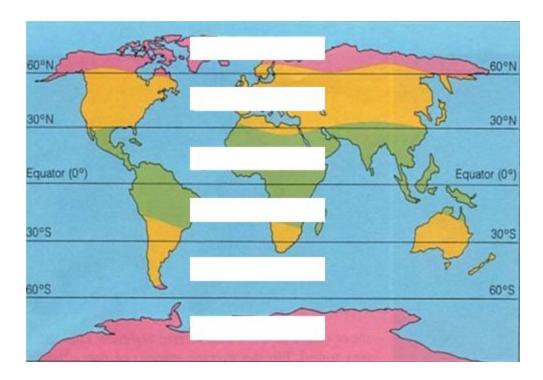
Type of Cloud	Graphic	Description	Weather it Brings
		High clouds that are made of <u>ice</u>	Fair Weather
		Fluffy, white cotton ball clouds	Signal Fair Weather
		Dark, puffy, and tall storm clouds that are dark grey	Stormy Weather: thunder, lightning, precipitation (can produce rain, snow, sleet, or hail)
		Clouds that can cover (blanket) the whole <u>sky</u> . These are also fog clouds.	Can produce light rain or snow.

<u>Climate</u>

Climate is the average weather in an area over a ______ period of time (more than 30 years). It

includes things like: weather conditions, weather extremes, droughts and rainy periods. The

______of an area impacts what plants will grow in the area and what animals can live there.


Factors that Affect Climate

1. Latitude- Climate Zones

· Latitude is the distance North or South of the Equator.

· Generally it is ______closest to the equator & coolest near the poles (farthest from the equator).

 \cdot The three climate zones are: _____, tropical and temperate zones Label the Climate Zones on the diagram in the space below.

Climate Zone	Location	Characteristics
	Between 66.5 Degrees Latitude and 90 Degrees Latitude (the top and bottom of the globe)	These zones do not get direct <u>sunlight</u> at any time during the year causing temperatures in these areas to be cold all year long. Lots of snow and ice.
	Between the Polar and Tropical Zones in both hemispheres	The amount of direct sunlight changes throughout the year because of the tilt of the earth on its axis and its revolution around the sun. Places in the temperate zone have <u>hot</u> summers and cold winters. (Winter, Spring, Summer, Fall the Temperate Zone has them all)
	Located between the equator and 23.5 Degrees Latitude (the middle of the globe)	These zones get direct sunlight all year long causing the temperatures in these areas to be <u>warm</u> all year long. Area receives the most rainfall.

2. Elevation

• Elevation is the ______ of an area above sea level. The elevation affects the climate of an area because as the elevation increases, temperatures and air pressure decrease.

• The top of a mountain is generally ______ in temperature than the bottom of the mountain.

· Higher elevations have ______ air pressure because there is less air above them pushing down.

 \cdot Mountains can also affect the amount of precipitation received by both of its sides. One side of a tall mountain can receive a lot of <u>precipitation</u> while the other nearly none. This is called a rain shadow desert. It is when a <u>mountain</u> is so high that the water vapor in the air condenses before it reaches the top of the mountain giving one side a lot of rain and leaving only dry air on the other side.

3. Proximity to Large Bodies of Water

The temperature of water changes much more ______ than land. Because of this, areas near large bodies of water do not change ______ as much as areas away from large bodies of water. This makes climates in shore areas more moderate (stable) than areas away from <u>water</u>. Areas away from water generally have greater differences in temperature from summer to winter and also in the daily high and low temperatures.

Environments

Environment	Climate	
Desert	 Very little rainfall Hot in the daytime andat night Low humidity 	
Swamp (Wetland)	 Year round heat and humidity; wet all the time Often located in tropical areas 	
Tundra	 Coldest and driest of all areas Long winters and summers Stays cold all year 	
Temperate Grassland -Savanna	 Low to moderate rainfall Warm temperature (high in wet season; low in dry season) 	
Temperate Grassland -Prairie	Average rainfall between 10 to 35 inches summers and cold winters	
Tropical Rainforest	 Warm all year Very high humidity 	

	· Very high amounts of <u>rainfall</u> each year
--	--

Big Ideas 14 Study Guide: Organization and Development of Living Things

Human Body Parts and Functions - Use the cards from classroom matching activity to practice.

Organ	Function	
	Stores urine until the body is ready to release it	
	The control center of the body	
	Senses sound waves	
	Senses and reacts to light and allows for vision	
	Pumps blood throughout the body	
	Helps balance the salts and acids in the body by filtering blood	
	Cleans the blood coming from the digestive system and makes bile	
	Take in oxygen and expel carbon dioxide	
	Produce movement by connecting your bones together.	
	Female reproductive organ that produces the egg	
	Helps with digestion by secreting enzymes to process sugars	
	Protects organs, provides support for the body and forms blood cells	
	Keeps germs and foreign objects from entering the human body and helps keep your body cool when you sweat	
	Digests and absorbs nutrients from food	
	Breaks food down as part of the digestive process	
	Male reproductive organ	

Here is a link to an online interactive to practice identifying the organs and learning where they are in the human body. <u>http://www.softschools.com/science/human_body/diagram/</u>

Plant Parts and Functions

Part	Function	Picture
	 Absorb water and nutrients from the soil Anchor (hold) the plant in place Store sugars and carbohydrates made by the leaves (roots do not make food) 	Two Root Systems Tayon or your Control of the system Control of th
	 Transports water and nutrients throughout the plant Supports the plant parts. 	
	 Make food for the plant using photosynthesis Gases are exchanged through openings on the leaves - carbon dioxide is taken in and oxygen is released. 	Stomata
	 Helps the plant reproduce by attracting pollinators and making seeds. 	
	 The fertilized part of the flowering plant. When it germinates, it can produce a new plant. 	
	 The sweet and fleshy product of a tree or other plant that contains seed and can be eaten as food. Protects the seed and aids in seed dispersal. 	

	 A seed like structure that produces a new plant (e.g., ferns or mosses). 	
Flower Parts	 The flower is the reproductive structure of a plant. Tested parts are: stamen, pistil, ovary, petal, sperm, and egg 	stigma style ovary ovule receptacle sepal
	 The male reproductive structure of a flowering plant. There is a fine dust like powder called pollen on the stamen that contains the male reproductive cells of plants that reproduce by seed. 	See image above - contains filament and anther. The pollen (sperm or male reproductive cells) are held on the anther.
	The female reproductive structure of a flowering plant.	See image above - contains stigma, style, ovary, and ovule.
Ovary	• The female reproductive organ that produces and contains egg cells.	See image above
Petal	 Modified leaves that surround the reproductive parts of flowers. They are often brightly colored or unusually shaped to attract pollinators. 	See image above
	The male reproductive cell (pollen)	See image above- The pollen (sperm or male reproductive cells) are held on the anther.
	The female reproductive cell (ovule)	See image above

Below is a link to an online interactive to practice identifying the parts of a flower and learning where they are on the plant. <u>https://extension.illinois.edu/gpe/case4/c4m1ec.html</u>

How Plants Respond to Environmental Factors

Factor	How Plants Respond		
Heat	Most plants have an ideal temperature in which they will(start to grow)		
Light	Stems and leaves grow light since leaves use sunlight to make food.		
Gravity	Roots grow downward into the soil in response to the pull of		

Classifying Plants

Flowering Plants	Non-Flowering Plants
If it has a seed, fruit, food, or flower then it is a flowering plant. Examples: Carrots, Oak tree, Rose,Orange tree	If it reproduces by spore, or has cones then it is a nonflowering plant. Examples: ferns and mosses (spore) Pines and firs (cones)

Reproduce by Seed	Reproduce by Spore
Flowering plants, Conifers (Pines and Firs)	Ferns and Mosses

Plant Reproduction

Pollination	 poller grans as it visits a flower to collect food. a) Pollen on the bee sticks to a peet to collect food. b) Pollen on the other plant. c) Pollen on the other plant. c) Pollen on the other plant. 	To transfer the from the male reproductive structure (stamen) to the female reproductive structure (pistil) to fertilize flowering plants.
Fertilization (Seed Production)	POLLEN GRAIN 1. A pollen grain lands on a flower. POLLEN TUBE 2. A tube from the pollen grain grows down to meet the egg cells. EGG CELLS 3. A seed forms where the tube enters an egg cell.	The process by which the female reproductive cell (egg) is with the male reproductive cell (sperm contained in pollen).
Seed Dispersal	Arimats Wind Wind Wind Wind Wind Wind Wind Wind	The process ofthe seed to a new location so that it has room to grow. Animals, wind, and water aid in seed dispersal.

Germination (Sprouting)	The process by which plants begin tofrom a seed or a spore.
Seedling	A young plant that is not yet producing
Adult Flowering Plant	A fully grown plant that has flowers so it is able to

Pollination and Fertilization Video http://studyjams.scholastic.com/studyjams/jams/science/plants/flowers.htm

Classifying Animals

Class of Animal	Characteristics	Examples
	 Vertebrates with hair or fur Most give live birth (platypus and echidna lay eggs) Feed their babies milk from their mother Breathe using lungs Warm-blooded 	Whale, dolphin, bat, rhinoceros,rat, human,squirrel,
	 Vertebrates with feathers and wings Lay eggs Breathe using lungs Warm-blooded 	Penguin, pelican,vulture, peacock
	 Vertebrates that breathe using lungs Have dry skin with scales Usually lay eggs on land Cold-blooded 	Alligator, snake, turtle,
	 Vertebrates with smooth, moist skin Lay eggs in water Breathe through gills when young and then lungs as adults Cold-blooded 	Salamander, frog, toad
	Vertebrates with scales and finsMost lay eggs	Stingray, goldfish, shark, eel

Breathe using gillsCold-blooded	
 Invertebrates with segmented bodies Exoskeletons Jointed legs 	Spider, Butterfly, Cockroach

Animals can also be classified into two classes depending on if they have a backbone. Vertebrates are animals that have a backbone. Mammals, birds, reptiles, amphibians, and fish are all ______.

Invertebrates are animals that do not have a backbone. Arthropods are ______. In place of a backbone, they have exoskeletons.

Below is a link to an interactive to practice the characteristics of the vertebrates - mammals, birds, reptiles, amphibians, and fish.

http://www.sheppardsoftware.com/content/animals/kidscorner/games/animalclassgame.htm

Big Idea 17 Study Guide: Interdependence

Adaptations are characteristics of an organism that increase its chances of survival in an ______ An organism is a living thing. Plants and animals are organisms. Some adaptations that help plants and animals survive include life cycle variations, animal behaviors, and physical (structural) characteristics.

Life Cycle adaptations are differences in the way that animals or plants reproduce that help them survive in an environment.

Life Cycle Variation	How it Helps the Organism Survive
Female Loggerhead Sea Turtles lay more than 100 eggs	This ensures that more of the turtles will live to be adults
A butterfly goes through complete metamorphosis which includes the egg, larva, pupa, and adult stages.	Butterflies eat leaves during the larva stage of development and nectar during adulthood so less of each type of food is needed in order for butterflies to survive.
Plants have brightly colored petals to attract pollinators	Pollination is an essential part of the flowering plant life cycle enabling the plant to reproduce

Behavioral Adaptations are things that animals do that help them survive. Some behaviors are learned while others are hereditary instincts that the animal is born knowing how to do.

Behavioral Adaptation	How it Helps the Organism Survive
Birds move south, migrate, for the winter	Keeps the bird from freezing and allows the bird to find food during seasonal temperature changes
Opossums play dead	Keeps predators from eating the opossum
Prairie dogs call out in alarm when a predator is threatening	Protects the prairie dog from predators

Behavioral adaptations can be categorized as inherited behaviors or learned behaviors.

Inherited Behaviors (Instincts)	Learned Behaviors
Spiders spin webs without being taught.	Bear cub watches mother to learn how to catch salmon when it jumps out of the river
Baby turtles know how to walk to the ocean after they hatch without being taught.	Chimpanzees poke a stick into a termite mound to capture termites for food.

Structural Adaptations are physical structures that a plant or animal has that helps it survive.

Structural Adaptation	How it Helps the Organism Survive	
Tigers have sharp claws and teeth	Allows the tiger to capture and eat its prey	
Whales have thick layers of blubber	Allow them to stay warm	
Some plants have large leaves	Allow them to collect sunlight in areas with little light	

Many plants and animals respond to changing seasons in order to survive. Below are some animal behaviors and plant responses that happen because of the changing seasons.

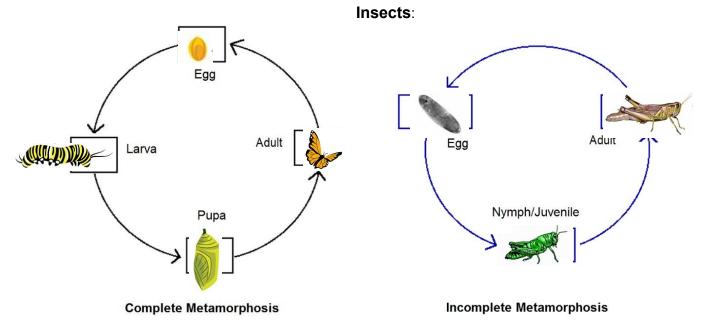
Seasonal Response	How it helps the Organism Survive
A bear hibernates	During hibernation, the bear sleeps and it's heart rate and breathing slow down requiring less energy during the cold winter when food is less plentiful
Many plants become dormant	Many plants go into an inactive state during winter when temperatures drop below what plants need to survive. Leaves fall off of deciduous trees when it gets cold and there is less sunlight.
Birds migrate	Helps the bird survive cold winters and find food in a warmer place

Florida plants and animals may have shorter or less pronounced seasonal adaptations than plants and animals living in areas north of Florida since Florida winters are not as cold as these areas.

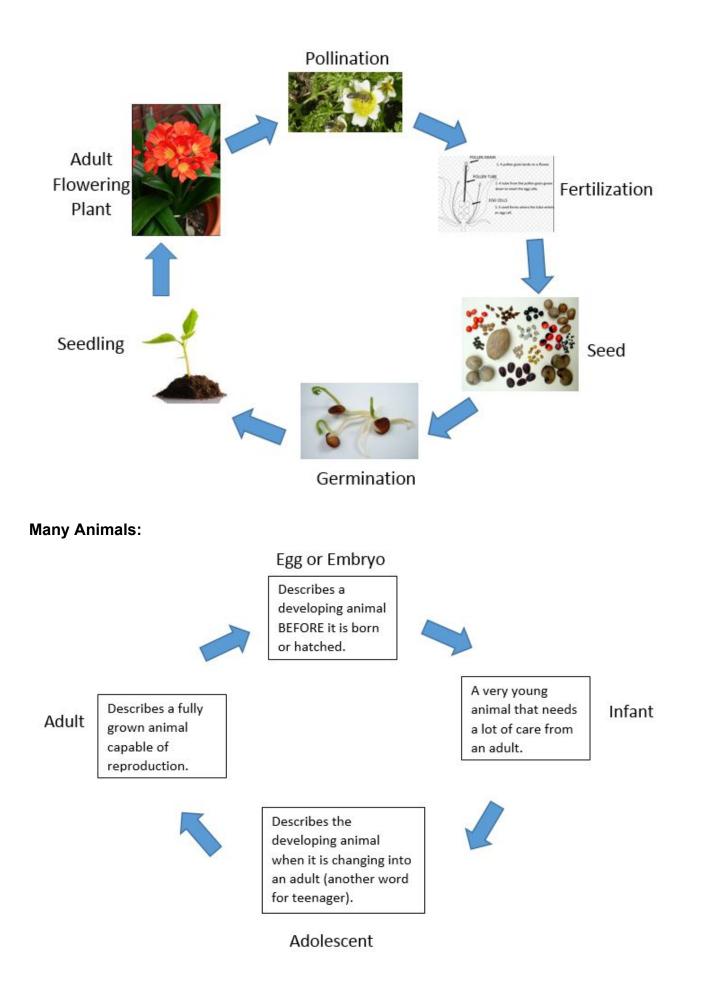
Environments

Plants and animals, including humans, impact the	. When the environment changes, the
characteristics of the different plants and animals determine if the plant	or animal is able to and
reproduce in the changed environment or if the animal has to move to a	a new location in order to survive. If a
plant or animal is unable to survive in the new environment and unable	to move to a new location,
the plant or animal will not survive. Some ways that humans have nega	tively affected the environment include
deforestation (removing forests to use the land in other ways) and pollu	tion. Both of these disrupt the
ecosystems and habitats in which they occur. Invasive species, species	s of plants or animals that are not native
to an area, also impact environments. An example of an invasive specie	es here in Florida, are the Burmese

Pythons who are threatening the Everglades. These Pythons have no natural predators and are eating animals causing a disruption in the food chain.


Food Chains

Plants and animals in an ecosystem are ______ on each other for survival. The energy source that drives the food chain is the ______. The Sun's energy is passed along the food chain as producers make their own food through photosynthesis and consumers (predators) eat producers and other consumers (prey) to obtain this ______. Producers (plants) are the only ones that can make their own _______ using the Sun's energy. All of the others (consumers) must eat plants and other animals that have eaten plants to get that energy.


	An animal that obtains nutrients from eating plants	
	An animal that obtains nutrients from eating both plants and animals	
	An animal that obtains nutrients from eating other animals	
Producer	A producer is a plant. They are able to their own food using energy from the sun in a process called photosynthesis.	
Consumer	A consumer is an animal that plants or other animals in order to get the energy they need to live.	

Big Idea 16 Study Guide: Heredity and Reproduction

Life Cycles

Plants:

